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Some filtrations of kCp

Write [m] = k[Y ]/(Ym). A picture
of this is

•

•

...

•

•

Y

Y

Y

Y

Putting the m dots in various weights
produces various filtrations of [m],
e.g. the radical filtration [m]rad:

wgt 0 •

wgt 1 •

...

wgtm − 2 •

wgtm − 1 •

Y

Y

Y

Y
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Some operations on filtrations

In general, a filtered module is
an ascending chain of
submodules (starting with 0’s):

...

A−1

A0

A1

...

In particular, we have four
natural operations.

gr The associated graded gr(A) =⊕
w∈Z grw (A) =

⊕
w∈Z Aw/Aw+1

un The underlying module
un(A) = A−∞

twist The filtration A(n) where
everything is moved down by n

gap The filtration gapw (A) where a
gap is inserted at weight w so that
grw (A) = 0
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Some operations on filtrations

For example, for Erad:

• gr(Erad) = k⊕p

• un(Erad) = kCp

• Erad(n) is the filtered module

wgt n •

wgt n + 1 •

...

wgt n + p − 2 •

wgt n + p − 1 •

Y

Y

Y

Y

• gapp−1(Erad) is the filtered module

wgt 0 •

wgt 1 •

...

wgt p − 3 •

wgt p − 2 •

wgt p − 1

wgt p •

Y

Y

Y

Y

Y
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Some morphisms

Morphisms f : A → B of filtered modules respect weights: f (Aw ) ⊂ Bw .

For example:

• βA : A → A(1) twists by 1, e.g.

Erad Erad(1)

wgt 0 •

wgt 1 • •

wgt 2
... •

•
...

wgt p − 1 • •

wgt p •

βErad

Y

Y
Y

Y
Y

Y Y

Y

• Y a : Erad(b) → Erad is a
morphism iff a ≥ b, e.g.

Erad(1) Erad

wgt 0 •

wgt 1 • •

wgt 2 • •

...
...

wgt p − 1 • •

wgt p •

Y

Y

Y

Y

Y

Y

Y

Y

Y Y

Y

Y

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 7 / 33



Some morphisms

Morphisms f : A → B of filtered modules respect weights: f (Aw ) ⊂ Bw .
For example:

• βA : A → A(1) twists by 1, e.g.

Erad Erad(1)

wgt 0 •

wgt 1 • •

wgt 2
... •

•
...

wgt p − 1 • •

wgt p •

βErad

Y

Y
Y

Y
Y

Y Y

Y

• Y a : Erad(b) → Erad is a
morphism iff a ≥ b, e.g.

Erad(1) Erad

wgt 0 •

wgt 1 • •

wgt 2 • •

...
...

wgt p − 1 • •

wgt p •

Y

Y

Y

Y

Y

Y

Y

Y

Y Y

Y

Y

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 7 / 33



Some morphisms

Morphisms f : A → B of filtered modules respect weights: f (Aw ) ⊂ Bw .
For example:

• βA : A → A(1) twists by 1, e.g.

Erad Erad(1)

wgt 0 •

wgt 1 • •

wgt 2
... •

•
...

wgt p − 1 • •

wgt p •

βErad

Y

Y
Y

Y
Y

Y Y

Y

• Y a : Erad(b) → Erad is a
morphism iff a ≥ b, e.g.

Erad(1) Erad

wgt 0 •

wgt 1 • •

wgt 2 • •

...
...

wgt p − 1 • •

wgt p •

Y

Y

Y

Y

Y

Y

Y

Y

Y Y

Y

Y

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 7 / 33



Some complexes

• Koszul complex

kos = ( k kCp kCp kY p−1 Y 1 )

• Koszul complex in weight 0

kos(0) = ( 1 kCp(0) kCp(0) 1Y p−1 Y 1 )

• Koszul complex filtered so that gr is split exact

1(p) Erad(1) Erad 1Y p−1 Y 1

• Cone of a morphism (in homological degree 0), e.g.

coneβErad
= ( Erad Erad(1)

βErad )
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The category of permutation-filtered kG -modules

Denote A = kG -mod.
Consider the following categories and functors:

Apfil Afil

perm(G ; k) A

gr ⌟ gr

Problem

Compute Spc(Db(A
pfil
grspl)).

Recall that Spc(K) is the space of
prime tt-ideals of K and that

{closed subsets of Spc(K)}

{tt-ideals of K}

{objects up to tt-equivalence}

∼=
∼=
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Applications

Representation theory Filtered representations are a natural thing to
study, even with restrictions on gr.

Motives Conjecturally Db((kG -mod)pfilgrspl)
∼= DATMgm(F ; k) are

tt-equivalent, where

• F is a field containing a primitive mth root of unity
• k = Z/m with char(F ) ∤ m,
• G = GF is the absolute Galois group
• DATMgm(F ; k) are the Artin-Tate motives, the thick

triangulated (in fact rigid tt-) subcategory of DMgm(F ; k)
generated by M(E )(n) for E/F finite separable and n ∈ Z

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 13 / 33



Applications

Representation theory Filtered representations are a natural thing to
study, even with restrictions on gr.

Motives Conjecturally Db((kG -mod)pfilgrspl)
∼= DATMgm(F ; k) are

tt-equivalent, where

• F is a field containing a primitive mth root of unity
• k = Z/m with char(F ) ∤ m,
• G = GF is the absolute Galois group
• DATMgm(F ; k) are the Artin-Tate motives, the thick

triangulated (in fact rigid tt-) subcategory of DMgm(F ; k)
generated by M(E )(n) for E/F finite separable and n ∈ Z

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 13 / 33



Applications

Representation theory Filtered representations are a natural thing to
study, even with restrictions on gr.

Motives Conjecturally Db((kG -mod)pfilgrspl)
∼= DATMgm(F ; k) are

tt-equivalent, where

• F is a field containing a primitive mth root of unity
• k = Z/m with char(F ) ∤ m,
• G = GF is the absolute Galois group
• DATMgm(F ; k) are the Artin-Tate motives, the thick
triangulated (in fact rigid tt-) subcategory of DMgm(F ; k)
generated by M(E )(n) for E/F finite separable and n ∈ Z

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 13 / 33



Outline of this talk

1 Some friendly objects

2 My (math) problem
Description of problem
Applications

3 The case G = Cp

grspl-projective-injectives
Overall strategy
The top region supp(coneβErad

)
The right region Db(A

fil
qab)

The mysterious bottom region Db(A
pfil
grspl)/⟨coneβErad

⟩
The bottom-left region stab(Apfil

grspl)

4 Future work

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 14 / 33



Outline of this talk

1 Some friendly objects

2 My (math) problem
Description of problem
Applications

3 The case G = Cp

grspl-projective-injectives
Overall strategy
The top region supp(coneβErad

)
The right region Db(A

fil
qab)

The mysterious bottom region Db(A
pfil
grspl)/⟨coneβErad

⟩
The bottom-left region stab(Apfil

grspl)

4 Future work

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 15 / 33



grspl-projective-injectives

Proposition (N., March)

A
pfil
grspl is Frobenius with projective-injectives forming a prime tensor-ideal

⟨Erad⟩. In fact, these are the direct sums of twists of Erad and kCp(0).

• Erad is projective by an elementary but intricate argument.

• The projectives form an ideal: Hom(P ⊗ A,−) = Hom(P,A∨ ⊗ (−))
is exact (the category is rigid, and every object is flat).

• Thus the projectives are ⟨Erad⟩ because (Erad ↠ 1)⊗ P exhibits P as
a direct summand of Erad ⊗ P.

• More elementary but intricate arguments show that projectives are
direct sums of twists of Erad and kCp(0) and that ⟨Erad⟩ is prime.

• E∨
rad = Erad(−p + 1) and kCp(0)

∨ = kCp(0) and duals of projectives
are injectives, so this is also the tensor-ideal of injectives.
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⟨Erad⟩. In fact, these are the direct sums of twists of Erad and kCp(0).
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A

Erad B,

p

f

lift f (1) to some a ∈ A such that wgt a = 0 and wgtYa ≥ 1. A
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a direct summand of Erad ⊗ P.

• More elementary but intricate arguments show that projectives are
direct sums of twists of Erad and kCp(0) and that ⟨Erad⟩ is prime.

• E∨
rad = Erad(−p + 1) and kCp(0)

∨ = kCp(0) and duals of projectives
are injectives, so this is also the tensor-ideal of injectives.
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Outline of this talk

1 Some friendly objects

2 My (math) problem
Description of problem
Applications

3 The case G = Cp

grspl-projective-injectives
Overall strategy
The top region supp(coneβErad

)
The right region Db(A

fil
qab)

The mysterious bottom region Db(A
pfil
grspl)/⟨coneβErad

⟩
The bottom-left region stab(Apfil

grspl)

4 Future work
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Overall strategy for G = Cp

The support of coneβErad
and the complement partition the spectrum.

SpcDb(A
pfil
grspl)

supp(coneβErad
)

U(coneβErad
)
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Overall strategy for G = Cp

The tt-functor gr induces a homeomorphism onto supp(coneβErad
) and

surjects closed points.

SpcDb(A
pfil
grspl) SpcKb(perm(G ; k))

Spc(gr)

∼=

• • ⟨kCp⟩ ⟨kos⟩

• ⟨kCp, kos⟩

U(coneβErad
)
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Overall strategy for G = Cp

Unfortunately U(coneβErad
) is somewhat mysterious. But since

U(coneβErad
) = U(coneβ) ∪ U(Erad), we can divide and conquer.
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Overall strategy for G = Cp

For U(coneβ), we can do better and look at U(kos(0)) ⊃ U(coneβ).
Localizing at ⟨kos(0)⟩ produces Db(A

fil
qab)!

SpcDb(A
pfil
grspl) SpcDb(A

fil
qab)

Spc(quo)

• • ⟨0⟩

• ⟨kCp(0)⟩

• ⟨coneβ⟩

• ⟨kCp(0), coneβ⟩
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Overall strategy for G = Cp

For U(coneβ), we can do better and look at U(kos(0)) ⊃ U(coneβ).
Localizing at ⟨kos(0)⟩ produces Db(A

fil
qab)!

SpcDb(A
pfil
grspl) SpcDb(A

fil
qab)

Spc(quo)

• ⟨kos(0)⟩ ⟨0⟩

⟨kCp(0), kos(0)⟩ ⟨kCp(0)⟩

⟨coneβ, kos(0)⟩ ⟨coneβ⟩

⟨kCp(0), coneβ, kos(0)⟩ ⟨kCp(0), coneβ⟩
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Overall strategy for G = Cp

For U(Erad), the localization is the stable category.

• •

•

⟨0⟩ • •

∃? ∃?

⟨gapp−1(Erad)⟩ •

Spc(stab(Apfil
grspl)) SpcDb(A

pfil
grspl)

Spc(quo)
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Overall strategy for G = Cp

For U(Erad), the localization is the stable category.

• •

•

⟨0⟩ ⟨Erad⟩ •

∃? ∃?

⟨gapp−1(Erad)⟩ ⟨gapp−1(Erad),Erad⟩

Spc(stab(Apfil
grspl)) SpcDb(A

pfil
grspl)

Spc(quo)
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Overall strategy for G = Cp

We are almost done.

SpcDb(A
pfil
grspl)

• ⟨kos(0)⟩

⟨kCp(0), kos(0)⟩

⟨Erad⟩ ⟨kos(0), coneβ⟩

∃?

⟨gapp−1(Erad),Erad⟩
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Overall strategy for G = Cp

Simplifying gives this:

SpcDb(A
pfil
grspl)

• ⟨kos(0)⟩

⟨kCp(0), kos(0)⟩

⟨Erad⟩ ⟨coneβ⟩

∃?

⟨gapp−1(Erad)⟩
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Overall strategy for G = Cp

Since Spc(gr) surjected the closed points, ⟨Erad⟩ must specialize to
something, which must be the top-left point (kos(0) is not perfect).

SpcDb(A
pfil
grspl)

• ⟨kos(0)⟩

⟨kCp(0), kos(0)⟩

⟨Erad⟩ ⟨coneβ⟩

∃?

⟨gapp−1(Erad)⟩
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Overall strategy for G = Cp

Finally, the top-left point contains kCp(0), and it must be ⟨kCp(0)⟩ by
examining supports.

SpcDb(A
pfil
grspl)

⟨kCp(0)⟩ ⟨kos(0)⟩

⟨kCp(0), kos(0)⟩

⟨Erad⟩ ⟨coneβ⟩

∃?

⟨gapp−1(Erad)⟩
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Overall strategy for G = Cp

Theorem (almost) (N.)

SpcDb(A
pfil
grspl) has the following description:

⟨kCp(0)⟩ ⟨kos(0)⟩

⟨kCp(0), kos(0)⟩

⟨Erad⟩ ⟨coneβ⟩

∃?

⟨gapp−1(Erad)⟩
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Outline of this talk

1 Some friendly objects

2 My (math) problem
Description of problem
Applications

3 The case G = Cp

grspl-projective-injectives
Overall strategy
The top region supp(coneβErad

)
The right region Db(A

fil
qab)

The mysterious bottom region Db(A
pfil
grspl)/⟨coneβErad

⟩
The bottom-left region stab(Apfil

grspl)

4 Future work
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The top region of Spc(Db(A
pfil
grspl))

Proposition (N., March)

gr : Db(A
pfil
grspl) → Kb(perm(G ; k)) induces a homeomorphism

supp(coneβErad
) ∼= Spc(Kb(perm(G ; k))) =

⟨kCp⟩ ⟨kos⟩

⟨kCp, kos⟩

Some easy observations:

• gr has a section, which by functoriality of Spc implies Spc(gr) is a
homeomorphism onto its image.

• Spc(gr) lands in supp(coneβErad
) since gr(coneβErad

) = k⊕p[1]⊕ k⊕p

is a direct sum of invertibles, so coneβErad
/∈ any prime in imSpc(gr)
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Key point

Spc(gr) surjects supp(coneβErad
). By ttrigonometry, this is equivalent to gr

detecting nilpotence on coneβErad
.

(This means that if gr(f ) = 0, then f ⊗n ⊗ coneβErad
= 0 for some n ≥ 1.)

Sketch of proof, just to say 5 key words:

• By rigidity, reduce to the case f : 1 → X in Kb(A
pfil).

• Unravelling and using that Erad is projective, f ⊗n ⊗ coneβErad
= 0 is

equivalent to having

Erad

(X⊗n)1 (X⊗n)0

a−bβErad
c

d

and
Erad(1)

(X⊗n)0 (X⊗n)−1

b
0

d

where a = f ⊗n
0 ϵ : Erad → (X⊗n)0.
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• The hypothesis gr(f ) = 0 offers a nullhomotopy k → gr(X1), which
trivially lifts to kCp(0) → X1. Projectivity of Erad lifts this along
X0
1 ↠ gr0(X1), producing w : Erad → X1.

• Set y = f0ϵ− dw : Erad → X0, which satisfies y(1) ∈ X1
0.

• Take b : Erad(1) → (X⊗n)0 to be the morphism such that
b(1) = y(1)⊗n, which trivially respects weights when n ≥ p since
y(1)⊗n ∈ (X⊗n)n0. Take c : Erad → (X⊗n)1 to be the morphism such
that

c(1) =
n∑

j=0

f0ϵ(1)
⊗n−j−1 ⊗ w(1)⊗ y(1)⊗j ,

which respects weights since f0ϵ, w , and y are morphisms from Erad.

• Since dw = f0ϵ− y , the sum dc(1) telescopes, showing that
dc = a− bβErad

.
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Finite permutation resolutions

Theorem (Rouquier, 2008)

Kb(perm(G ; k))/⟨qab-ac⟩ → Db(A)
is an equivalence

Proposition (N., April)

Db(A
pfil
grspl)/⟨qab-ac⟩ → Db(A

fil
qab)

is an equivalence for G a p-group.
Every filtered kG -module admits
a finite resolution by
permutation-filtered kG -modules.
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The interesting part is showing essential surjectivity because a priori one
does not know that the essential image is triangulated.

• In our setting, this is also tensor, hence a tt-subcategory.

• We have generators for Db(A
fil
qab) as tt-subcategory: 1(1), 1(−1), and

A(0) for A in A.

• These generators admit m-projective-permutation resolutions for all
m ≥ 0, namely by taking the ones afforded by Balmer-Gallauer 2022
and putting them in a single weight. So we are done.
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The right region Db(A
fil
qab)

Proposition (N., February)

Spc(Db(A
fil
qab)) is the space

0

⟨kCp(0)⟩

⟨coneβ⟩

⟨kCp(0), coneβ⟩

This generalizes to p-groups.

• gr : Db(A
fil
qab) → Db(A) detects

nilpotence on coneβ, hence as before
Spc(gr) is a homeomorphism onto
supp(coneβ).

• The bottom two points come from

Db(A)

Db(A
fil
qab)

Db(A
fil
qab)/⟨coneβ⟩

(0)

un

being an adjoint equivalence.
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A good guess

Kb(perm(G ; k))

Db(A
pfil
grspl)

Db(A
pfil
grspl)/⟨coneβErad

⟩

(0)

quo

• Typically quo(0) ⊣ un are equivalences, e.g. for Afil
qab.

Colin Ni (UCLA) Permutation-filtered kG -modules August 27, 2024 28 / 33



A good guess

Kb(perm(G ; k))

Db(A
pfil
grspl)

Db(A
pfil
grspl)/⟨coneβErad

⟩

(0)

quo

• Typically quo(0) ⊣ un are equivalences, e.g. for Afil
qab.

• Here, quo(0) is fully faithful, contains A(0) in its essential image, and
has a candidate right-adjoint ũn.
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A good guess

1(p) is in the essential image of quo(0) because

ess im(quo(0)) ∋ kCp(0) kCp(0) k(0)

X Erad(1) Erad 1

1(p) 1(p)

∼= ∼= ∼=

grspl-acyclic cone ∼=

We are using that mod coneβErad
, not only is βErad

invertible, but
kCp(0) → Erad is too.
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ũn=colimn R(−)0(L⊗n⊗−)

• Typically quo(0) ⊣ un are equivalences, e.g. for Afil
qab.

• Here, quo(0) is fully faithful, contains A(0) in its essential image, and
has a candidate right-adjoint ũn.
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A good guess

When p = 2, we have a miraculously shorter Koszul k → kC2 → k , so

ess im(quo(0)) ∋ kC2(0) k(0)

X Erad 1

1(p) 1(1)

∼= ∼=

cone is grspl-acyclic ∼=

shows that 1(1) is in the essential image of quo(0)!
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ũn=colimn R(−)0(L⊗n⊗−)

• Typically quo(0) ⊣ un are equivalences, e.g. for Afil
qab.

• Here, quo(0) is fully faithful, contains A(0) in its essential image, and
has a candidate right-adjoint ũn.
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Consider the prime tt-ideal ker(un: stab(Apfil
grspl) → stab(A)) of the

filtrations of projectives.

Progress (N., Sunday)

ker(un) is generated as a
tt-ideal by any nonzero
gapi (Erad), and it contains
any remaining primes. So
Spc(stab(Apfil

grspl)) is the space

0

∃?

ker(un)

• For example, to show that
Spc(stab(Apfil

grspl)) consists of only
two points, it suffices to show that
for any nonzero A, some nonzero
gapi (Erad) is in ⟨A⟩.

• For p = 2 this is easy because if A
is nonzero, then gap1(Erad)⊗ A is a
direct sum of twists of gap1(Erad)’s.

• For p > 2, this does not work
because there are indecomposable
filtrations of decomposables.
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Modular fixed points and Kb(perm(G ; k))

Set K(G ) = Kb(perm(G ; k)) for G a p-group. Spc(K(G )) is known!

Theorem (Balmer-Gallauer, 2023)

There exist modular fixed points functors ΨH : K(G ) → K(G � H)
satisfying ΨH(k(G/K )) = k((G/K )H). The cohomological opens
Spech(H•(G �H, k)) = Spc(Db(G �H)) ⊂ Spc(K(G �H)), for H ≤ G up
to conjugacy, partition SpcK(G ).

In general, it looks like various projective support varieties glued together.

Conjecture (Balmer, 2024)

There exist filtered versions of the modular fixed points functors, and they
organize Spc(Apfil

grspl) into two copies of Spc(K(G )) with specializations
directly upward
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Modular fixed points and Kb(perm(G ; k))

Set K(G ) = Kb(perm(G ; k)) for G a p-group. Spc(K(G )) is known!

Theorem (Balmer-Gallauer, 2023)
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The end
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