Permutation-filtered kG-modules

Colin Ni

UCLA

August 27, 2024

Colin Ni (UCLA)

Permutation-filtered *kG*-modules

イロト イポト イヨト イヨト

э

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

Outline of this talk

Some friendly objects

My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

C !!	N 1 1		CI A1
COLI	ו או ר	- ())	
		(~	

2

Write $kC_p = k[Y]/(Y^p)$. A picture of this is

э

イロト イポト イヨト イヨト

Write $kC_p = k[Y]/(Y^p)$. A picture of this is

Putting the *p* dots in various weights produces various filtrations of kC_{p} , *e.g.* the radical filtration \mathbb{E}_{rad} :

< 1 k

Write $[m] = k[Y]/(Y^m)$. A picture of this is

Putting the *m* dots in various weights produces various filtrations of [m], *e.g.* the radical filtration $[m]_{rad}$:

< ∃⇒

< 47 ▶

In general, a filtered module is an ascending chain of submodules (starting with 0's):

 $\begin{array}{c} \vdots \\ \uparrow \\ A^{-1} \\ \uparrow \\ A^{0} \\ \uparrow \\ A^{1} \\ \uparrow \\ \vdots \end{array}$

In particular, we have four natural operations.

Colin Ni (UCLA)

In general, a filtered module is an ascending chain of submodules (starting with 0's):

 $egin{array}{c} A^{-1} \\ \uparrow \\ A^0 \\ \uparrow \\ A^1 \\ \uparrow \end{array}$

gr The associated graded $\operatorname{gr}(A) = \bigoplus_{w \in \mathbb{Z}} \operatorname{gr}^w(A) = \bigoplus_{w \in \mathbb{Z}} A^w / A^{w+1}$

In particular, we have four natural operations.

Colin Ni (UCLA)

In general, a filtered module is an ascending chain of submodules (starting with 0's):

 $egin{array}{c} A^{-1} \\ \uparrow \\ A^0 \\ \uparrow \\ A^1 \\ \uparrow \end{array}$

gr The associated graded $gr(A) = \bigoplus_{w \in \mathbb{Z}} gr^w(A) = \bigoplus_{w \in \mathbb{Z}} A^w / A^{w+1}$ **un** The underlying module $un(A) = A^{-\infty}$

In particular, we have four natural operations.

In general, a filtered module is an ascending chain of submodules (starting with 0's):

 A^{-1}

↑ A⁰ ↑ A¹ ↑ **gr** The associated graded $gr(A) = \bigoplus_{w \in \mathbb{Z}} gr^w(A) = \bigoplus_{w \in \mathbb{Z}} A^w / A^{w+1}$ **un** The underlying module $un(A) = A^{-\infty}$ **twist** The filtration A(n) where everything is moved down by n

In particular, we have four natural operations.

In general, a filtered module is an ascending chain of submodules (starting with 0's):

 A^{-1}

↑

 A^0

∱

A¹ ↑ **gr** The associated graded gr(A) = $\bigoplus_{w \in \mathbb{Z}} \operatorname{gr}^w(A) = \bigoplus_{w \in \mathbb{Z}} A^w / A^{w+1}$ un The underlying module $un(A) = A^{-\infty}$ **twist** The filtration A(n) where everything is moved down by n **gap** The filtration $gap^{w}(A)$ where a gap is inserted at weight w so that $\operatorname{gr}^w(A) = 0$

In particular, we have four natural operations.

5/33

For example, for \mathbb{E}_{rad} :

Image: A matrix

э

For example, for $\mathbb{E}_{\mathsf{rad}}$:

• $gr(\mathbb{E}_{rad}) = k^{\oplus p}$

э

イロト イボト イヨト イヨト

For example, for \mathbb{E}_{rad} :

- $\operatorname{gr}(\mathbb{E}_{\operatorname{rad}}) = k^{\oplus p}$
- $un(\mathbb{E}_{rad}) = kC_p$

э

イロト イボト イヨト イヨト

For example, for $\mathbb{E}_{\mathsf{rad}}$:

- $gr(\mathbb{E}_{rad}) = k^{\oplus p}$
- $un(\mathbb{E}_{rad}) = kC_p$
- $\mathbb{E}_{rad}(n)$ is the filtered module

< 回 > < 回 > < 回 >

э

For example, for $\mathbb{E}_{\mathsf{rad}}$:

- $gr(\mathbb{E}_{rad}) = k^{\oplus p}$ • $un(\mathbb{E}_{rad}) = kC_p$
- $\mathbb{E}_{rad}(n)$ is the filtered module
- $gap^{
 ho-1}(\mathbb{E}_{rad})$ is the filtered module

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Some morphisms

Morphisms $f: A \to B$ of filtered modules respect weights: $f(A^w) \subset B^w$.

э

Some morphisms

Morphisms $f: A \to B$ of filtered modules respect weights: $f(A^w) \subset B^w$. For example:

• $\beta_A : A \to A(1)$ twists by 1, e.g.

Some morphisms

Morphisms $f: A \to B$ of filtered modules respect weights: $f(A^w) \subset B^w$. For example:

• $Y^a : \mathbb{E}_{rad}(b) \to \mathbb{E}_{rad}$ is a morphism iff $a \geq b$, e.g. $\mathbb{E}_{rad}(1) \xrightarrow{Y} \mathbb{E}_{rad}$ wgt 0 wgt 1 wgt 2 $Y \downarrow$ $\downarrow Y$ $Y\downarrow$ wgt p-1 $Y \downarrow$ wgt p

• Koszul complex

$$kos = (k \xrightarrow{Y^{p-1}} kC_p \xrightarrow{Y} kC_p \xrightarrow{1} k)$$

2

・ロト ・四ト ・ヨト ・ヨト

• Koszul complex in weight 0

$$kos(0) = (1 \xrightarrow{Y^{p-1}} kC_p(0) \xrightarrow{Y} kC_p(0) \xrightarrow{1} 1)$$

э

・ロト ・四ト ・ヨト ・ヨト

• Koszul complex in weight 0

$$kos(0) = (1 \xrightarrow{Y^{p-1}} kC_p(0) \xrightarrow{Y} kC_p(0) \xrightarrow{1} 1)$$

• Koszul complex filtered so that gr is split exact

< 1 k

→ ∃ →

• Koszul complex in weight 0

$$kos(0) = (1 \xrightarrow{Y^{p-1}} kC_p(0) \xrightarrow{Y} kC_p(0) \xrightarrow{1} 1)$$

• Koszul complex filtered so that gr is split exact

$$\mathbb{1}(\rho) \xrightarrow{Y^{p-1}} \mathbb{E}_{\mathsf{rad}}(1) \xrightarrow{Y} \mathbb{E}_{\mathsf{rad}} \xrightarrow{1} \mathbb{1}$$

э

8/33

Image: A matrix

• Koszul complex in weight 0

$$kos(0) = (1 \xrightarrow{Y^{\rho-1}} kC_{\rho}(0) \xrightarrow{Y} kC_{\rho}(0) \xrightarrow{1} 1)$$

• Koszul complex filtered so that gr is split exact

$$\mathbb{1}(p) \xrightarrow{Y^{p-1}} \mathbb{E}_{\mathsf{rad}}(1) \xrightarrow{Y} \mathbb{E}_{\mathsf{rad}} \xrightarrow{1} \mathbb{1}$$

• Cone of a morphism (in homological degree 0), e.g.

$$\operatorname{cone} \beta_{\mathbb{E}_{\mathsf{rad}}} = (\mathbb{E}_{\mathsf{rad}} \xrightarrow{\beta_{\mathbb{E}_{\mathsf{rad}}}} \mathbb{E}_{\mathsf{rad}}(1))$$

Colin Ni (UCLA)

8/33

< 47 ▶

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3) The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

9/33

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

Denote $\mathcal{A} = kG$ -mod.

Consider the following categories and functors:

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Denote $\mathcal{A} = kG$ -mod.

Consider the following categories and functors:

Spelling it out, $\mathcal{A}^{\text{pfil}}$ is the full subcategory of permutation-filtered modules. All examples we have seen so far are permutation-filtered, but *e.g.* for $G = C_p$ with p odd, the filtration

Denote $\mathcal{A} = kG$ -mod.

Consider the following tensor (\otimes_k for reps) categories and tensor functors:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Denote $\mathcal{A} = kG$ -mod.

Consider the following exact tensor categories and exact tensor functors:

→ 3 → 3

Denote $\mathcal{A} = kG$ -mod.

Consider the following tt-categories and tt-functors:

Denote $\mathcal{A} = kG$ -mod.

Consider the following tt-categories and tt-functors:

$$\begin{array}{ccc} \mathsf{D}_{\mathsf{b}}(\mathcal{A}_{\mathsf{grspl}}^{\mathsf{pfil}}) & \longleftrightarrow & \mathsf{D}_{\mathsf{b}}(\mathcal{A}_{\mathsf{qab}}^{\mathsf{fil}}) \\ & & & \downarrow^{\mathsf{gr}} \\ & & & \downarrow^{\mathsf{gr}} \\ \mathsf{K}_{\mathsf{b}}(\mathsf{perm}(G;k)) & \longleftrightarrow & \mathsf{D}_{\mathsf{b}}(\mathcal{A}) \end{array}$$

Problem

Compute Spc($D_b(\mathcal{A}_{grspl}^{pfil})$).

11/33

Denote $\mathcal{A} = kG$ -mod.

Consider the following tt-categories and tt-functors:

Problem

Compute $Spc(D_b(\mathcal{A}_{grspl}^{pfil}))$.

Recall that $\operatorname{Spc}(\mathcal{K})$ is the space of prime tt-ideals of \mathcal{K} and that

{Thomason subsets of $Spc(\mathcal{K})$ } $\|$ {tt-ideals of \mathcal{K} } $\|$ {objects up to tt-equivalence}

Denote $\mathcal{A} = kG$ -mod.

Consider the following tt-categories and tt-functors:

Problem

Compute $Spc(D_b(\mathcal{A}_{grspl}^{pfil}))$.

Recall that $Spc(\mathcal{K})$ is the space of prime tt-ideals of \mathcal{K} and that

```
{closed subsets of Spc(\mathcal{K})}

\|

{tt-ideals of \mathcal{K}}

\|

{objects up to tt-equivalence}
```

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

12/33
Applications

Colin Ni (UCLA)

3

Applications

Representation theory Filtered representations are a natural thing to study, even with restrictions on gr.

э

イロト 不得 トイヨト イヨト

Applications

Representation theory Filtered representations are a natural thing to study, even with restrictions on gr.

Motives Conjecturally $D_b((kG \text{-mod})_{grspl}^{pfil}) \cong DATM^{gm}(F; k)$ are tt-equivalent, where

- F is a field containing a primitive mth root of unity
- $k = \mathbb{Z}/m$ with char(F) $\nmid m$,
- $G = G_F$ is the absolute Galois group
- DATM^{gm}(F; k) are the Artin-Tate motives, the thick triangulated (in fact rigid tt-) subcategory of DM^{gm}(F; k) generated by M(E)(n) for E/F finite separable and n ∈ Z

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region D_b(A^{fil}_{qab})
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

grspl-projective-injectives

- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

15 / 33

Proposition (N., March)

 $\mathcal{A}_{grspl}^{pfil}$ is Frobenius with projective-injectives forming a prime tensor-ideal $\langle \mathbb{E}_{rad} \rangle$. In fact, these are the direct sums of twists of \mathbb{E}_{rad} and $kC_p(0)$.

• \mathbb{E}_{rad} is projective by an elementary but intricate argument.

くぼう くほう くほう

Proposition (N., March)

 $\mathcal{A}_{grspl}^{pfil}$ is Frobenius with projective-injectives forming a prime tensor-ideal $\langle \mathbb{E}_{rad} \rangle$. In fact, these are the direct sums of twists of \mathbb{E}_{rad} and $kC_p(0)$.

+ $\mathbb{E}_{\mathsf{rad}}$ is projective by an elementary but intricate argument. Given

$$\mathbb{E}_{\mathsf{rad}} \xrightarrow{f} B,$$

lift f(1) to some $a \in A$ such that wgt a = 0 and wgt $Ya \ge 1$. A violation of weights can only occur if $w = \text{wgt } Y^i a = \text{wgt } Y^{i+1}a < \infty$ for some i, but then $Y^{i+1}a$ comes from a copy of $kC_p(w)$. Using this, we can correct a so that wgt $Y^{i+1}a = \text{wgt } Y^i a + 1$.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Proposition (N., March)

 $\mathcal{A}_{grspl}^{pfil}$ is Frobenius with projective-injectives forming a prime tensor-ideal $\langle \mathbb{E}_{rad} \rangle$. In fact, these are the direct sums of twists of \mathbb{E}_{rad} and $kC_p(0)$.

- $\mathbb{E}_{\mathsf{rad}}$ is projective by an elementary but intricate argument.
- The projectives form an ideal: Hom(P ⊗ A, -) = Hom(P, A[∨] ⊗ (-)) is exact (the category is rigid, and every object is flat).

Proposition (N., March)

 $\mathcal{A}_{\text{grspl}}^{\text{pful}}$ is Frobenius with projective-injectives forming a prime tensor-ideal $\langle \mathbb{E}_{\text{rad}} \rangle$. In fact, these are the direct sums of twists of \mathbb{E}_{rad} and $kC_p(0)$.

- $\mathbb{E}_{\mathsf{rad}}$ is projective by an elementary but intricate argument.
- The projectives form an ideal: Hom(P ⊗ A, -) = Hom(P, A[∨] ⊗ (-)) is exact (the category is rigid, and every object is flat).
- Thus the projectives are (E_{rad}) because (E_{rad} → 1) ⊗ P exhibits P as a direct summand of E_{rad} ⊗ P.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition (N., March)

 $\mathcal{A}_{grspl}^{pfil}$ is Frobenius with projective-injectives forming a prime tensor-ideal $\langle \mathbb{E}_{rad} \rangle$. In fact, these are the direct sums of twists of \mathbb{E}_{rad} and $kC_p(0)$.

- $\mathbb{E}_{\mathsf{rad}}$ is projective by an elementary but intricate argument.
- The projectives form an ideal: Hom(P ⊗ A, -) = Hom(P, A[∨] ⊗ (-)) is exact (the category is rigid, and every object is flat).
- Thus the projectives are (E_{rad}) because (E_{rad} → 1) ⊗ P exhibits P as a direct summand of E_{rad} ⊗ P.
- More elementary but intricate arguments show that projectives are direct sums of twists of E_{rad} and kC_p(0) and that ⟨E_{rad}⟩ is prime.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition (N., March)

 $\mathcal{A}_{grspl}^{pfil}$ is Frobenius with projective-injectives forming a prime tensor-ideal $\langle \mathbb{E}_{rad} \rangle$. In fact, these are the direct sums of twists of \mathbb{E}_{rad} and $kC_p(0)$.

- $\mathbb{E}_{\mathsf{rad}}$ is projective by an elementary but intricate argument.
- The projectives form an ideal: Hom(P ⊗ A, -) = Hom(P, A[∨] ⊗ (-)) is exact (the category is rigid, and every object is flat).
- Thus the projectives are (E_{rad}) because (E_{rad} → 1) ⊗ P exhibits P as a direct summand of E_{rad} ⊗ P.
- More elementary but intricate arguments show that projectives are direct sums of twists of E_{rad} and kC_p(0) and that ⟨E_{rad}⟩ is prime.
- $\mathbb{E}_{rad}^{\vee} = \mathbb{E}_{rad}(-p+1)$ and $kC_p(0)^{\vee} = kC_p(0)$ and duals of projectives are injectives, so this is also the tensor-ideal of injectives.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

17 / 33

The support of cone $\beta_{\mathbb{E}_{rad}}$ and the complement partition the spectrum.

 $\operatorname{Spc} D_b(\mathcal{A}_{grspl}^{pfil})$

 $\mathsf{supp}(\mathsf{cone}\,\beta_{\mathbb{E}_{\mathsf{rad}}})$

 $U(\operatorname{cone}\beta_{\mathbb{E}_{\mathsf{rad}}})$

Colin Ni (UCLA)

The tt-functor gr induces a homeomorphism onto supp(cone $\beta_{\mathbb{E}_{rad}}$) and surjects closed points.

Unfortunately $U(\operatorname{cone} \beta_{\mathbb{E}_{rad}})$ is somewhat mysterious. But since $U(\operatorname{cone} \beta_{\mathbb{E}_{rad}}) = U(\operatorname{cone} \beta) \cup U(\mathbb{E}_{rad})$, we can divide and conquer.

< 4[™] >

3

For $U(\operatorname{cone} \beta)$, we can do better and look at $U(\operatorname{kos}(0)) \supset U(\operatorname{cone} \beta)$. Localizing at $\langle \operatorname{kos}(0) \rangle$ produces $D_b(\mathcal{A}_{\operatorname{gab}}^{\operatorname{fil}})!$

For $U(\operatorname{cone} \beta)$, we can do better and look at $U(\operatorname{kos}(0)) \supset U(\operatorname{cone} \beta)$. Localizing at $\langle \operatorname{kos}(0) \rangle$ produces $D_b(\mathcal{A}_{aab}^{fil})!$

Colin Ni (UCLA)

For $U(\mathbb{E}_{rad})$, the localization is the stable category.

For $U(\mathbb{E}_{rad})$, the localization is the stable category.

Permutation-filtered kG-modules

Colin Ni (UCLA)

We are almost done.

< ∃⇒

Simplifying gives this:

Colin Ni (UCLA)

- ∢ ⊒ →

э

Since Spc(gr) surjected the closed points, $\langle \mathbb{E}_{rad} \rangle$ must specialize to something, which must be the top-left point (kos(0) is not perfect).

< 4 ₽ × <

→ ∃ →

Finally, the top-left point contains $kC_p(0)$, and it must be $\langle kC_p(0) \rangle$ by examining supports.

→ ∃ →

Theorem (almost) (N.)

 $\mathsf{Spc}\,\mathsf{D}_b(\mathcal{A}_{\mathsf{grspl}}^{\mathsf{pfil}})$ has the following description:

Colin Ni (UCLA)

イロト イポト イヨト イヨト 二日

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy

• The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)

- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

Proposition (N., March)

gr: $D_{b}(\mathcal{A}_{grspl}^{pfil}) \rightarrow K_{b}(perm(G; k))$ induces a homeomorphism

$$\operatorname{supp}(\operatorname{cone} \beta_{\mathbb{E}_{\operatorname{rad}}}) \cong \operatorname{Spc}(\mathsf{K}_{\mathsf{b}}(\operatorname{perm}(G;k))) = \begin{array}{c} \langle kC_{p} \rangle & \langle \operatorname{kos} \rangle \\ \langle kC_{p}, \operatorname{kos} \rangle \end{array}$$

Proposition (N., March)

gr: $D_b(\mathcal{A}_{grspl}^{pfil}) \to K_b(perm(G; k))$ induces a homeomorphism

$$\operatorname{supp}(\operatorname{cone} \beta_{\mathbb{E}_{rad}}) \cong \operatorname{Spc}(\mathsf{K}_{\mathsf{b}}(\operatorname{perm}(G;k))) = \begin{array}{c} \langle kC_{p} \rangle & \langle \operatorname{kos} \rangle \\ \langle kC_{p}, \operatorname{kos} \rangle \end{array}$$

This is the top region in the sense that Spc(gr) surjects the closed points; by ttrigonometry this is equivalent to gr being conservative.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition (N., March)

gr: $D_b(\mathcal{A}_{grspl}^{pfil}) \to K_b(perm(G; k))$ induces a homeomorphism

$$\operatorname{supp}(\operatorname{cone} \beta_{\mathbb{E}_{\operatorname{rad}}}) \cong \operatorname{Spc}(\mathsf{K}_{\mathsf{b}}(\operatorname{perm}(G;k))) = \langle kC_{p} \rangle \land \langle kos \rangle \land \langle kC_{p}, \operatorname{kos} \rangle$$

Some easy observations:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Proposition (N., March)

gr: $D_b(\mathcal{A}_{grspl}^{pfil}) \to K_b(perm(G; k))$ induces a homeomorphism

$$\operatorname{supp}(\operatorname{cone} \beta_{\mathbb{E}_{\operatorname{rad}}}) \cong \operatorname{Spc}(\mathsf{K}_{\mathsf{b}}(\operatorname{perm}(G;k))) = \langle kC_{p} \rangle \land \langle kos \rangle \land \langle kC_{p}, \operatorname{kos} \rangle$$

Some easy observations:

• gr has a section, which by functoriality of Spc implies Spc(gr) is a homeomorphism onto its image.

イロト イポト イヨト イヨト 二日

Proposition (N., March)

gr: $D_b(\mathcal{A}_{grspl}^{pfil}) \to K_b(perm(G; k))$ induces a homeomorphism

$$\operatorname{supp}(\operatorname{cone} \beta_{\mathbb{E}_{\operatorname{rad}}}) \cong \operatorname{Spc}(\mathsf{K}_{\mathsf{b}}(\operatorname{perm}(G;k))) = \langle kC_{p} \rangle \land \langle kos \rangle \land \langle kC_{p}, \operatorname{kos} \rangle$$

Some easy observations:

- gr has a section, which by functoriality of Spc implies Spc(gr) is a homeomorphism onto its image.
- Spc(gr) lands in supp(cone $\beta_{\mathbb{E}_{rd}}$) since gr(cone $\beta_{\mathbb{E}_{rd}}$) = $k^{\oplus p}[1] \oplus k^{\oplus p}$ is a direct sum of invertibles, so cone $\beta_{\mathbb{E}_{rad}} \notin$ any prime in im Spc(gr)

Spc(gr) surjects supp(cone $\beta_{\mathbb{E}_{rad}}$). By thrigonometry, this is equivalent to gr detecting nilpotence on cone $\beta_{\mathbb{E}_{rad}}$.

< A > <

э

Spc(gr) surjects supp(cone $\beta_{\mathbb{E}_{rad}}$). By thrigonometry, this is equivalent to gr detecting nilpotence on cone $\beta_{\mathbb{E}_{rad}}$.

(This means that if gr(f) = 0, then $f^{\otimes n} \otimes \operatorname{cone} \beta_{\mathbb{E}_{rad}} = 0$ for some $n \ge 1$.)

→ 3 → 3

Spc(gr) surjects supp(cone $\beta_{\mathbb{E}_{rad}}$). By thrigonometry, this is equivalent to gr detecting nilpotence on cone $\beta_{\mathbb{E}_{rad}}$.

(This means that if gr(f) = 0, then $f^{\otimes n} \otimes \operatorname{cone} \beta_{\mathbb{E}_{rad}} = 0$ for some $n \ge 1$.) Sketch of proof, just to say 5 key words:

→ 3 → 3

Spc(gr) surjects supp(cone $\beta_{\mathbb{E}_{rad}}$). By thrigonometry, this is equivalent to gr detecting nilpotence on cone $\beta_{\mathbb{E}_{rad}}$.

(This means that if gr(f) = 0, then $f^{\otimes n} \otimes \operatorname{cone} \beta_{\mathbb{E}_{rad}} = 0$ for some $n \ge 1$.) Sketch of proof, just to say 5 key words:

• By rigidity, reduce to the case $f: \mathbb{1} \to \mathbb{X}$ in $K_b(\mathcal{A}^{pfil})$.

Spc(gr) surjects supp(cone $\beta_{\mathbb{E}_{rad}}$). By thrigonometry, this is equivalent to gr detecting nilpotence on cone $\beta_{\mathbb{E}_{rad}}$.

(This means that if gr(f) = 0, then $f^{\otimes n} \otimes \operatorname{cone} \beta_{\mathbb{E}_{rad}} = 0$ for some $n \ge 1$.) Sketch of proof, just to say 5 key words:

- By rigidity, reduce to the case $f: \mathbb{1} \to \mathbb{X}$ in $K_b(\mathcal{A}^{pfil})$.
- Unravelling, $f^{\otimes n} \otimes \operatorname{cone} \beta_{\mathbb{E}_{\mathrm{rad}}} = 0$ is equivalent to having

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Spc(gr) surjects supp(cone $\beta_{\mathbb{E}_{rad}}$). By thrigonometry, this is equivalent to gr detecting nilpotence on cone $\beta_{\mathbb{E}_{rad}}$.

(This means that if gr(f) = 0, then $f^{\otimes n} \otimes \operatorname{cone} \beta_{\mathbb{E}_{rad}} = 0$ for some $n \ge 1$.) Sketch of proof, just to say 5 key words:

- By rigidity, reduce to the case $f: \mathbb{1} \to \mathbb{X}$ in $K_b(\mathcal{A}^{pfil})$.
- Unravelling and using that \mathbb{E}_{rad} is projective, $f^{\otimes n} \otimes \operatorname{cone} \beta_{\mathbb{E}_{rad}} = 0$ is equivalent to having

where
$$a = f_0^{\otimes n} \epsilon \colon \mathbb{E}_{\mathsf{rad}} \to (\mathbb{X}^{\otimes n})_0$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
The hypothesis gr(f) = 0 offers a nullhomotopy k → gr(X₁), which trivially lifts to kC_p(0) → X₁. Projectivity of E_{rad} lifts this along X₁⁰ → gr⁰(X₁), producing w: E_{rad} → X₁.

3

- The hypothesis $\operatorname{gr}(f) = 0$ offers a nullhomotopy $k \to \operatorname{gr}(\mathbb{X}_1)$, which trivially lifts to $kC_p(0) \to \mathbb{X}_1$. Projectivity of $\mathbb{E}_{\operatorname{rad}}$ lifts this along $\mathbb{X}_1^0 \twoheadrightarrow \operatorname{gr}^0(\mathbb{X}_1)$, producing $w \colon \mathbb{E}_{\operatorname{rad}} \to \mathbb{X}_1$.
- Set $y = f_0 \epsilon dw \colon \mathbb{E}_{\mathsf{rad}} \to \mathbb{X}_0$, which satisfies $y(1) \in \mathbb{X}_0^1$.

- The hypothesis gr(f) = 0 offers a nullhomotopy k → gr(X₁), which trivially lifts to kC_p(0) → X₁. Projectivity of E_{rad} lifts this along X₁⁰ → gr⁰(X₁), producing w: E_{rad} → X₁.
- Set $y = f_0 \epsilon dw$: $\mathbb{E}_{\mathsf{rad}} \to \mathbb{X}_0$, which satisfies $y(1) \in \mathbb{X}_0^1$.
- Take $b: \mathbb{E}_{rad}(1) \to (\mathbb{X}^{\otimes n})_0$ to be the morphism such that $b(1) = y(1)^{\otimes n}$, which trivially respects weights when $n \ge p$ since $y(1)^{\otimes n} \in (\mathbb{X}^{\otimes n})_0^n$. Take $c: \mathbb{E}_{rad} \to (\mathbb{X}^{\otimes n})_1$ to be the morphism such that

$$c(1) = \sum_{j=0}^n f_0 \epsilon(1)^{\otimes n-j-1} \otimes w(1) \otimes y(1)^{\otimes j},$$

which respects weights since $f_0 \epsilon$, w, and y are morphisms from \mathbb{E}_{rad} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The hypothesis gr(f) = 0 offers a nullhomotopy k → gr(X₁), which trivially lifts to kC_p(0) → X₁. Projectivity of E_{rad} lifts this along X₁⁰ → gr⁰(X₁), producing w: E_{rad} → X₁.
- Set $y = f_0 \epsilon dw \colon \mathbb{E}_{\mathsf{rad}} \to \mathbb{X}_0$, which satisfies $y(1) \in \mathbb{X}_0^1$.
- Take $b: \mathbb{E}_{rad}(1) \to (\mathbb{X}^{\otimes n})_0$ to be the morphism such that $b(1) = y(1)^{\otimes n}$, which trivially respects weights when $n \ge p$ since $y(1)^{\otimes n} \in (\mathbb{X}^{\otimes n})_0^n$. Take $c: \mathbb{E}_{rad} \to (\mathbb{X}^{\otimes n})_1$ to be the morphism such that

$$c(1) = \sum_{j=0}^n f_0 \epsilon(1)^{\otimes n-j-1} \otimes w(1) \otimes y(1)^{\otimes j},$$

which respects weights since $f_0\epsilon$, w, and y are morphisms from \mathbb{E}_{rad} .

• Since $dw = f_0 \epsilon - y$, the sum dc(1) telescopes, showing that $dc = a - b\beta_{\mathbb{E}_{rad}}$.

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

Theorem (Rouquier, 2008) $\mathsf{K}_{\mathsf{b}}(\mathsf{perm}(G;k))/\langle \mathsf{qab-ac} \rangle \to \mathsf{D}_{\mathsf{b}}(\mathcal{A})$ is an equivalence

э

Theorem (Rouquier, 2008) $K_b(\text{perm}(G; k))/\langle \text{qab-ac} \rangle \rightarrow D_b(\mathcal{A})$ is an equivalence

Theorem (Balmer-Gallauer, 2022)

Every kG-module admits a finite resolution by permutation modules.

Theorem (Rouquier, 2008) $K_b(\text{perm}(G; k))/\langle \text{qab-ac} \rangle \rightarrow D_b(\mathcal{A})$ is an equivalence

Theorem (Balmer-Gallauer, 2022)

Every kG-module admits a finite resolution by permutation modules.

In contrast, a kG-module admits a finite projective resolution iff it is projective.

Theorem (Rouquier, 2008) $K_b(\text{perm}(G; k))/\langle \text{qab-ac} \rangle \rightarrow D_b(\mathcal{A})$ is an equivalence

Theorem (Balmer-Gallauer, 2022)

Every kG-module admits a finite resolution by permutation modules.

In contrast, a kG-module admits a finite projective resolution iff it is projective.

Proposition (N., April)

 $\begin{array}{l} \mathsf{D}_{\mathsf{b}}(\mathcal{A}_{\mathsf{grspl}}^{\mathsf{pfil}})/\langle\mathsf{qab}\mathsf{-}\mathsf{ac}\rangle\to\mathsf{D}_{\mathsf{b}}(\mathcal{A}_{\mathsf{qab}}^{\mathsf{fil}})\\ \text{is an equivalence for } G \ \text{a } p\mathsf{-}\mathsf{group}.\\ \text{Every filtered } kG\mathsf{-}\mathsf{module } \mathsf{admits}\\ \text{a finite resolution by}\\ \mathsf{permutation-filtered } kG\mathsf{-}\mathsf{modules}. \end{array}$

A B A A B A

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Key Idea

A complex \mathbb{X} in $D_b(\mathcal{A}_{qab}^{fil})$ is *m*-projective-permutation if \mathbb{X}_i is permutation-filtered for all *i* and \mathbb{X}_j is qab-projective for $j \leq m$. The full subcategory of $D_b(\mathcal{A}_{qab}^{fil})$ of objects admitting an *m*-projective-permutation resolution for all $m \geq 0$ is triangulated.

Key Idea

A complex \mathbb{X} in $D_b(\mathcal{A}_{qab}^{fil})$ is *m*-projective-permutation if \mathbb{X}_i is permutation-filtered for all *i* and \mathbb{X}_j is qab-projective for $j \leq m$. The full subcategory of $D_b(\mathcal{A}_{qab}^{fil})$ of objects admitting an *m*-projective-permutation resolution for all $m \geq 0$ is triangulated.

• In our setting, this is also tensor, hence a tt-subcategory.

Key Idea

A complex \mathbb{X} in $D_b(\mathcal{A}_{qab}^{fil})$ is *m*-projective-permutation if \mathbb{X}_i is permutation-filtered for all *i* and \mathbb{X}_j is qab-projective for $j \leq m$. The full subcategory of $D_b(\mathcal{A}_{qab}^{fil})$ of objects admitting an *m*-projective-permutation resolution for all $m \geq 0$ is triangulated.

- In our setting, this is also tensor, hence a tt-subcategory.
- We have generators for $D_b(\mathcal{A}_{qab}^{fil})$ as tt-subcategory: 1(1), 1(-1), and A(0) for A in A.

Key Idea

A complex \mathbb{X} in $D_b(\mathcal{A}_{qab}^{fil})$ is *m*-projective-permutation if \mathbb{X}_i is permutation-filtered for all *i* and \mathbb{X}_j is qab-projective for $j \leq m$. The full subcategory of $D_b(\mathcal{A}_{qab}^{fil})$ of objects admitting an *m*-projective-permutation resolution for all $m \geq 0$ is triangulated.

- In our setting, this is also tensor, hence a tt-subcategory.
- We have generators for $D_b(\mathcal{A}_{qab}^{fil})$ as tt-subcategory: $\mathbb{1}(1)$, $\mathbb{1}(-1)$, and A(0) for A in A.
- These generators admit *m*-projective-permutation resolutions for all $m \ge 0$, namely by taking the ones afforded by Balmer-Gallauer 2022 and putting them in a single weight. So we are done.

25 / 33

<ロト < 四ト < 三ト < 三ト = 三

The right region $D_b(\mathcal{A}_{qab}^{fil})$

This generalizes to *p*-groups.

The right region $D_b(\mathcal{A}_{qab}^{fil})$

This generalizes to *p*-groups.

• gr: $D_b(\mathcal{A}_{qab}^{fil}) \rightarrow D_b(\mathcal{A})$ detects nilpotence on cone β , hence as before Spc(gr) is a homeomorphism onto $supp(cone \beta)$.

글 에 에 글 에 다

The right region $D_b(\mathcal{A}_{qab}^{fil})$

This generalizes to *p*-groups.

- gr: $D_b(\mathcal{A}_{qab}^{fil}) \rightarrow D_b(\mathcal{A})$ detects nilpotence on cone β , hence as before Spc(gr) is a homeomorphism onto $supp(cone \beta)$.
- The bottom two points come from

being an adjoint equivalence.

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

• Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .

< 4 P < 4

프 () () 프 () 프

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .
- For p > 2, the essential image of quo(0) does not contain 1(1) because un(1(1)) = ([2] → [1]) ∉ K_b(perm(G; k)).

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .
- For p > 2, the essential image of quo(0) does not contain 1(1) because un(1(1)) = ([2] → [1]) ∉ K_b(perm(G; k)). But it does contain 1(p).

 $\mathbb{1}(p)$ is in the essential image of quo(0) because

We are using that mod cone $\beta_{\mathbb{E}_{rad}}$, not only is $\beta_{\mathbb{E}_{rad}}$ invertible, but $kC_p(0) \to \mathbb{E}_{rad}$ is too.

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .
- For p > 2, the essential image of quo(0) does not contain 1(1) because un(1(1)) = ([2] → [1]) ∉ K_b(perm(G; k)). But it does contain 1(p).

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .
- For p > 2, the essential image of quo(0) does not contain 1(1) because un(1(1)) = ([2] → [1]) ∉ K_b(perm(G; k)). But it does contain 1(p).
- For p = 2, the essential image of quo(0) does contain 1(1)!

When p = 2, we have a miraculously shorter Koszul $k \rightarrow kC_2 \rightarrow k$, so

shows that 1(1) is in the essential image of quo(0)!

< 4 ₽ × <

ヨト イヨト ニヨ

- Typically quo(0) \dashv un are equivalences, *e.g.* for \mathcal{A}_{qab}^{fil} .
- Here, quo(0) is fully faithful, contains A(0) in its essential image, and has a candidate right-adjoint \widetilde{un} .
- For p > 2, the essential image of quo(0) does not contain 1(1) because un(1(1)) = ([2] → [1]) ∉ K_b(perm(G; k)). But it does contain 1(p).
- For p = 2, the essential image of quo(0) does contain 1(1)!

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3 The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work

29 / 33

イロト 不得 トイヨト イヨト

э

30 / 33

 For example, to show that Spc(stab(A^{pfil}_{grspl})) consists of only two points, it suffices to show that for any nonzero A, some nonzero gapⁱ(E_{rad}) is in ⟨A⟩.

Progress (N., Sunday) ker(un) is generated as a tt-ideal by any nonzero $gap^{i}(\mathbb{E}_{rad})$, and it contains any remaining primes. So $Spc(stab(\mathcal{A}_{grspl}^{pfil}))$ is the space 3? ker(un)

- For example, to show that Spc(stab(A^{pfil}_{grspl})) consists of only two points, it suffices to show that for any nonzero A, some nonzero gapⁱ(E_{rad}) is in ⟨A⟩.
- For p = 2 this is easy because if A is nonzero, then gap¹(E_{rad}) ⊗ A is a direct sum of twists of gap¹(E_{rad})'s.

Progress (N., Sunday) ker(un) is generated as a tt-ideal by any nonzero $gap^{i}(\mathbb{E}_{rad})$, and it contains any remaining primes. So $Spc(stab(\mathcal{A}_{grspl}^{pfil}))$ is the space 3? ker(un)

- For example, to show that $Spc(stab(\mathcal{A}_{grspl}^{pfil}))$ consists of only two points, it suffices to show that for any nonzero A, some nonzero $gap^{i}(\mathbb{E}_{rad})$ is in $\langle A \rangle$.
- For p = 2 this is easy because if A is nonzero, then gap¹(E_{rad}) ⊗ A is a direct sum of twists of gap¹(E_{rad})'s.
- For p > 2, this does not work because there are indecomposable filtrations of decomposables.

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of this talk

Some friendly objects

2 My (math) problem

- Description of problem
- Applications

3) The case $G = C_p$

- grspl-projective-injectives
- Overall strategy
- The top region supp(cone $\beta_{\mathbb{E}_{rad}}$)
- The right region $D_b(\mathcal{A}_{qab}^{fil})$
- The mysterious bottom region $D_b(\mathcal{A}_{grspl}^{pfil})/\langle \operatorname{cone} \beta_{\mathbb{E}_{rad}} \rangle$
- The bottom-left region stab($\mathcal{A}_{grspl}^{pfil}$)

Future work
Set $\mathcal{K}(G) = K_{b}(perm(G; k))$ for G a p-group. $Spc(\mathcal{K}(G))$ is known!

イロト イポト イヨト イヨト 二日

Set $\mathcal{K}(G) = K_{b}(perm(G; k))$ for G a p-group. $Spc(\mathcal{K}(G))$ is known!

Theorem (Balmer-Gallauer, 2023)

There exist modular fixed points functors $\Psi^H \colon \mathcal{K}(G) \to \mathcal{K}(G /\!\!/ H)$ satisfying $\Psi^H(k(G/K)) = k((G/K)^H)$. The cohomological opens $\operatorname{Spec}^h(\operatorname{H}^{\bullet}(G /\!\!/ H, k)) = \operatorname{Spc}(\operatorname{D}_b(G /\!\!/ H)) \subset \operatorname{Spc}(\mathcal{K}(G /\!\!/ H))$, for $H \leq G$ up to conjugacy, partition $\operatorname{Spc} \mathcal{K}(G)$.

32 / 33

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Set $\mathcal{K}(G) = K_{b}(perm(G; k))$ for G a p-group. $Spc(\mathcal{K}(G))$ is known!

Theorem (Balmer-Gallauer, 2023)

There exist modular fixed points functors $\Psi^H \colon \mathcal{K}(G) \to \mathcal{K}(G /\!\!/ H)$ satisfying $\Psi^H(k(G/K)) = k((G/K)^H)$. The cohomological opens $\operatorname{Spec}^h(\operatorname{H}^{\bullet}(G /\!\!/ H, k)) = \operatorname{Spc}(\operatorname{D}_b(G /\!\!/ H)) \subset \operatorname{Spc}(\mathcal{K}(G /\!\!/ H))$, for $H \leq G$ up to conjugacy, partition $\operatorname{Spc} \mathcal{K}(G)$.

For example $\operatorname{Spc}(\mathcal{K}(C_2 \times C_2))$ is the space

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Set $\mathcal{K}(G) = K_{b}(perm(G; k))$ for G a p-group. $Spc(\mathcal{K}(G))$ is known!

Theorem (Balmer-Gallauer, 2023)

There exist modular fixed points functors $\Psi^H \colon \mathcal{K}(G) \to \mathcal{K}(G /\!\!/ H)$ satisfying $\Psi^H(k(G/K)) = k((G/K)^H)$. The cohomological opens $\operatorname{Spec}^h(\operatorname{H}^{\bullet}(G /\!\!/ H, k)) = \operatorname{Spc}(\operatorname{D}_b(G /\!\!/ H)) \subset \operatorname{Spc}(\mathcal{K}(G /\!\!/ H))$, for $H \leq G$ up to conjugacy, partition $\operatorname{Spc} \mathcal{K}(G)$.

In general, it looks like various projective support varieties glued together.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Set $\mathcal{K}(G) = \mathsf{K}_{\mathsf{b}}(\mathsf{perm}(G; k))$ for G a *p*-group. $\mathsf{Spc}(\mathcal{K}(G))$ is known!

Theorem (Balmer-Gallauer, 2023)

There exist modular fixed points functors $\Psi^H \colon \mathcal{K}(G) \to \mathcal{K}(G \parallel H)$ satisfying $\Psi^{H}(k(G/K)) = k((G/K)^{H})$. The cohomological opens $\operatorname{Spec}^{\operatorname{h}}(\operatorname{H}^{\bullet}(G /\!\!/ H, k)) = \operatorname{Spc}(\operatorname{D}_{\operatorname{h}}(G /\!\!/ H)) \subset \operatorname{Spc}(\mathfrak{K}(G /\!\!/ H)), \text{ for } H \leq G \text{ up}$ to conjugacy, partition $\operatorname{Spc} \mathcal{K}(G)$.

In general, it looks like various projective support varieties glued together.

Conjecture (Balmer, 2024)

There exist filtered versions of the modular fixed points functors, and they organize $\text{Spc}(\mathcal{A}_{grspl}^{pfil})$ into two copies of $\text{Spc}(\mathcal{K}(G))$ with specializations directly upward

Set $\mathcal{K}(G) = \mathsf{K}_{\mathsf{b}}(\mathsf{perm}(G; k))$ for G a *p*-group. $\mathsf{Spc}(\mathcal{K}(G))$ is known!

Theorem (Balmer-Gallauer, 2023)

There exist modular fixed points functors $\Psi^H \colon \mathcal{K}(G) \to \mathcal{K}(G \parallel H)$ satisfying $\Psi^{H}(k(G/K)) = k((G/K)^{H})$. The cohomological opens $\operatorname{Spec}^{\operatorname{h}}(\operatorname{H}^{\bullet}(G /\!\!/ H, k)) = \operatorname{Spc}(\operatorname{D}_{\operatorname{h}}(G /\!\!/ H)) \subset \operatorname{Spc}(\mathfrak{K}(G /\!\!/ H)), \text{ for } H \leq G \text{ up}$ to conjugacy, partition $\operatorname{Spc} \mathcal{K}(G)$.

In general, it looks like various projective support varieties glued together.

Conjecture (**Balmer**, 2024)

There exist filtered versions of the modular fixed points functors, and they organize $\text{Spc}(\mathcal{A}_{grspl}^{pfil})$ into two copies of $\text{Spc}(\mathcal{K}(G))$ with specializations directly upward

The end

2